Advertisements
Advertisements
प्रश्न
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
उत्तर
`[ 2 - √3 ]/[ 2 + √3 ] xx [ 2 - √3 ]/[ 2 - √3 ]`
= `[( 2 - √3 )^2]/[(2)^2 - (√3)^2] = [ 4 + 3 - 4√3]/[ 4 - 3 ]`
= `[ 7 - 4√3 ]/1`
= 7 - 4√3
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`