Advertisements
Advertisements
प्रश्न
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
उत्तर
`[ 2 - √3 ]/[ 2 + √3 ] xx [ 2 - √3 ]/[ 2 - √3 ]`
= `[( 2 - √3 )^2]/[(2)^2 - (√3)^2] = [ 4 + 3 - 4√3]/[ 4 - 3 ]`
= `[ 7 - 4√3 ]/1`
= 7 - 4√3
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
Simplify by rationalising the denominator in the following.
`(7sqrt(3) - 5sqrt(2))/(sqrt(48) + sqrt(18)`
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x2 + y2