Advertisements
Advertisements
प्रश्न
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
उत्तर
`3/[ sqrt5 + sqrt2 ] xx ((sqrt5 - sqrt2)/(sqrt5 - sqrt2))`
= `[3 (sqrt5 - sqrt2)]/[ (sqrt5)^2 - (sqrt2)^2 ]`
= `[3 (sqrt5 - sqrt2)]/[ 5 - 2]`
= `sqrt5 - sqrt2`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(1)/(sqrt(3) + sqrt(2))`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Show that Negative of an irrational number is irrational.