Advertisements
Advertisements
प्रश्न
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
उत्तर
`1/(sqrt3 - sqrt2 ) xx ((sqrt3 + sqrt2)/(sqrt3 + sqrt2)) = sqrt( 3 + sqrt2)/[(sqrt3)^2- (sqrt2)^2] = [sqrt3 + sqrt2]/[ 3 - 2 ]`
= `sqrt3 + sqrt2`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `3/sqrt5`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
In the following, find the values of a and b:
`(1)/(sqrt(5) - sqrt(3)) = "a"sqrt(5) - "b"sqrt(3)`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Evaluate, correct to one place of decimal, the expression `5/(sqrt20 - sqrt10)`, if `sqrt5` = 2.2 and `sqrt10` = 3.2.
Show that Negative of an irrational number is irrational.