Advertisements
Advertisements
प्रश्न
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
उत्तर
`(1)/(5 + sqrt(2))`
= `(1)/(5 + sqrt(2)) xx (5 - sqrt(2))/(5 - sqrt(2)`
= `(5 - sqrt(2))/((5)^2 - (sqrt(2))^2)`
= `(5 - sqrt(2))/(25 - 2)`
= `(5 - sqrt(2))/(23)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`12/(4sqrt3 - sqrt 2)`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(sqrt(5) - sqrt(7))/sqrt(3)`
Simplify by rationalising the denominator in the following.
`(2sqrt(3) - sqrt(6))/(2sqrt(3) + sqrt(6)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
In the following, find the values of a and b:
`(sqrt(2) + sqrt(3))/(3sqrt(2) - 2sqrt(3)) = "a" - "b"sqrt(6)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
Show that: `x^2 + 1/x^2 = 34,` if x = 3 + `2sqrt2`