Advertisements
Advertisements
प्रश्न
Simplify :
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
उत्तर
` 22/[2sqrt3 + 1] + 17/[ 2sqrt3 - 1]`
= `[ 22(2sqrt3 - 1) + 17(2sqrt3 + 1)]/[(2sqrt3 + 1)( 2sqrt3 -1 )]`
= `[ 44sqrt3 - 22 + 34sqrt3 + 17]/[ (2sqrt3)^2 - 1 ]`
=`[ 78sqrt3 - 5]/[ 12 - 1]`
= `[ 78sqrt3 - 5 ]/11`
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Simplify by rationalising the denominator in the following.
`(1)/(5 + sqrt(2))`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
If x = `(7 + 4sqrt(3))`, find the value of
`x^2 + (1)/x^2`
If x = `(7 + 4sqrt(3))`, find the values of
`x^3 + (1)/x^3`
If x = `(4 - sqrt(15))`, find the values of
`x + (1)/x`
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
If x = `sqrt3 - sqrt2`, find the value of:
(i) `x + 1/x`
(ii) `x^2 + 1/x^2`
(iii) `x^3 + 1/x^3`
(iv) `x^3 + 1/x^3 - 3(x^2 + 1/x^2) + x + 1/x`
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`