Advertisements
Advertisements
प्रश्न
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`
उत्तर
`(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3)`
`= (4 - sqrt5)/(4 + sqrt5) xx (4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) xx (5 - sqrt3)/(5 - sqrt3) + (4 + sqrt5)/(4 - sqrt5) xx (4 + sqrt5)/(4 + sqrt5) + 2/(5 - sqrt3) xx (5 + sqrt3)/(5 + sqrt3)`
`= (4 - sqrt5)^2/((4)^2 - (sqrt5)^2) + (2(5 - sqrt3))/((5)^2 - (sqrt3)^2) + (4 + sqrt5)^2/((4)^2 - (sqrt5)) + (2(5 + sqrt3))/((5)^2 - (sqrt3)^2)`
`= (16 + 5 - 8sqrt5)/(16 - 5) + (10 - 2sqrt3)/(25 - 3) + (16 + 5 + 8sqrt5)/(16 - 5) + (2(5 + sqrt3))/(25 - 3)`
`= (21 - 8sqrt5)/11 + (10 - 2sqrt3)/22 + (21 + 8sqrt5)/11 + (cancel(2)^1 (5 + sqrt3))/cancel(22)_11`
`= (21 - 8sqrt5)/11 + (cancel(2)^1(5 - sqrt3))/cancel(22)_11 + (21 + 8sqrt5)/11 + (5 + sqrt3)/11`
`= (21 - cancel(8sqrt5) + 5 - cancel(sqrt3) + 21 + cancel(8sqrt5) + 5 + cancel(sqrt3))/11`
`= (21 + 5 + 21 + 5)/11`
`= 52/11`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalize the denominator.
`1/sqrt5`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
Simplify the following :
`(7sqrt(3))/(sqrt(10) + sqrt(3)) - (2sqrt(5))/(sqrt(6) + sqrt(5)) - (3sqrt(2))/(sqrt(15) + 3sqrt(2)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
If x = `(4 - sqrt(15))`, find the values of
`x^3 + (1)/x^3`