Advertisements
Advertisements
प्रश्न
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`
उत्तर
Given: x = 2 + `sqrt3`
`1/x = 1/(2 + sqrt3) xx (2 - sqrt3)/(2 - sqrt3)`
`= (2 - sqrt3)/((2)^2 - (sqrt3)^2)`
`= (2 - sqrt3)/(4 - 3)`
`= 2 - sqrt3`
Now,
`x + 1/x = 2 + cancel(sqrt3) + 2 - cancel(sqrt3)`
`x + 1/x = 2 + 2`
`x + 1/x`= 4
`therefore x^3 + 1/x^3`
`= (x + 1/x)^3 - 3 * cancel(x) * 1/cancel(x) (x + 1/x)`
`= (4)^3 - 3 xx 4`
= 64 - 12
= 52
APPEARS IN
संबंधित प्रश्न
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
In the following, find the values of a and b:
`(5 + 2sqrt(3))/(7 + 4sqrt(3)) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
If x = `(4 - sqrt(15))`, find the values of
`(1)/x`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`