Advertisements
Advertisements
Question
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`
Solution
Given: x = 2 + `sqrt3`
`1/x = 1/(2 + sqrt3) xx (2 - sqrt3)/(2 - sqrt3)`
`= (2 - sqrt3)/((2)^2 - (sqrt3)^2)`
`= (2 - sqrt3)/(4 - 3)`
`= 2 - sqrt3`
Now,
`x + 1/x = 2 + cancel(sqrt3) + 2 - cancel(sqrt3)`
`x + 1/x = 2 + 2`
`x + 1/x`= 4
`therefore x^3 + 1/x^3`
`= (x + 1/x)^3 - 3 * cancel(x) * 1/cancel(x) (x + 1/x)`
`= (4)^3 - 3 xx 4`
= 64 - 12
= 52
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify by rationalising the denominator in the following.
`(sqrt(12) + sqrt(18))/(sqrt(75) - sqrt(50)`
Simplify the following :
`sqrt(6)/(sqrt(2) + sqrt(3)) + (3sqrt(2))/(sqrt(6) + sqrt(3)) - (4sqrt(3))/(sqrt(6) + sqrt(2)`
Simplify the following :
`(6)/(2sqrt(3) - sqrt(6)) + sqrt(6)/(sqrt(3) + sqrt(2)) - (4sqrt(3))/(sqrt(6) - sqrt(2)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(sqrt(3) - 2)/(sqrt(3) + 2) = "a"sqrt(3) + "b"`
If x = `(4 - sqrt(15))`, find the values of:
`(x + (1)/x)^2`