Advertisements
Advertisements
Question
Rationalize the denominator.
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
Solution
`(sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3)`
`= (sqrt 5 - sqrt 3)/(sqrt 5 + sqrt 3) xx (sqrt 5 - sqrt 3)/(sqrt 5 - sqrt 3)`
`= (sqrt 5 - sqrt 3)^2/((sqrt 5)^2 - (sqrt 3)^2) ....[because (a + b)(a - b) = a^2 - b^2]`
`= ((sqrt 5)^2 - 2(sqrt 5)(sqrt 3) + (sqrt 3)^2)/(5-3) ...[because (a - b)^2 = a^2 - 2ab + b^2]`
`= (5 - 2sqrt15 + 3 )/2`
`= (8 - 2sqrt 15)/2`
`= (2 (4 - sqrt15))/2`
`= 4 -sqrt15`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
If x = `(4 - sqrt(15))`, find the values of
`x^2 + (1)/x^2`
Draw a line segment of length `sqrt5` cm.
Draw a line segment of length `sqrt8` cm.
Show that: `(4 - sqrt5)/(4 + sqrt5) + 2/(5 + sqrt3) + (4 + sqrt5)/(4 - sqrt5) + 2/(5 - sqrt3) = 52/11`