Advertisements
Advertisements
Question
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Solution
`(5 + sqrt(6))/(5 - sqrt(6)`
= `(5 + sqrt(6))/(5 - sqrt(6)) xx (5 + sqrt(6))/(5 + sqrt(6)`
= `((5 + sqrt(6))^2)/((5)^2 - (sqrt(6))^2`
= `(25 + 6 + 10sqrt(6))/(25 - 6)`
= `(31 + 10sqrt(6))/(19)`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalize the denominator.
`1/sqrt5`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `((2 + sqrt(5)))/((2 - sqrt(5))` and y = `((2 - sqrt(5)))/((2 + sqrt(5))`, show that (x2 - y2) = `144sqrt(5)`.
Draw a line segment of length `sqrt3` cm.