Advertisements
Advertisements
Question
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
Solution
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)`
= `(7 + sqrt(5))/(7 - sqrt(5)) xx (7 + sqrt(5))/(7 + sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) xx (7 - sqrt(5))/(7 - sqrt(5))`
= `((7 + sqrt(5))^2)/(7^2 - (sqrt(5))^2) - (7 - sqrt(5))^2/(7 ^2 - (sqrt(5))^2`
= `(7^2 + 2 xx 7 xx sqrt(5) + (sqrt(5))^2)/(49 - 5) - (7^2 - 2 xx 7 xx sqrt(5) + (sqrt(5))^2)/(49 - 5)`
= `(49 + 14sqrt(5) + 5)/(44) - (49 - 14sqrt(5) + 5)/(44)`
= `(54 + 14sqrt(5))/(44) - (54 - 14sqrt(5))/(44)`
= `(2(27 + 7sqrt(5)))/(44) - (2(22 - 7sqrt(5)))/(44)`
= `(27 + 7sqrt(5))/(22) - (27 - 7sqrt(5))/(22)`
= `(27)/(22) + (7sqrt(5))/(22) - (27)/(22) + (7sqrt(5))/(22)`
= `(14sqrt(5))/(22)`
= `(7sqrt(5))/(11)`
= `0 + (7sqrt(5))/(11)`
= `"a" + "b"sqrt(5)`
Hence, a = 0 and b = `(7)/(11)`.
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`2/(3 sqrt 7)`
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify by rationalising the denominator in the following.
`(sqrt(7) - sqrt(5))/(sqrt(7) + sqrt(5)`
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x2 + y2
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3
Simplify:
`(sqrt(x^2 + y^2) - y)/(x - sqrt(x^2 - y^2)) ÷ (sqrt(x^2 - y^2) + x)/(sqrt(x^2 + y^2) + y)`
Draw a line segment of length `sqrt8` cm.