Advertisements
Advertisements
Question
Rationalise the denominators of : `1/(sqrt3 - sqrt2 )`
Solution
`1/(sqrt3 - sqrt2 ) xx ((sqrt3 + sqrt2)/(sqrt3 + sqrt2)) = sqrt( 3 + sqrt2)/[(sqrt3)^2- (sqrt2)^2] = [sqrt3 + sqrt2]/[ 3 - 2 ]`
= `sqrt3 + sqrt2`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`1/sqrt5`
Rationalize the denominator.
`1/(3 sqrt 5 + 2 sqrt 2)`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify by rationalising the denominator in the following.
`(5)/(sqrt(7) - sqrt(2))`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(5 + sqrt(6))/(5 - sqrt(6)`
Simplify the following
`(4 + sqrt(5))/(4 - sqrt(5)) + (4 - sqrt(5))/(4 + sqrt(5)`
If `(sqrt(2.5) - sqrt(0.75))/(sqrt(2.5) + sqrt(0.75)) = "p" + "q"sqrt(30)`, find the values of p and q.
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3