Advertisements
Advertisements
Question
In the following, find the value of a and b:
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1) = "a" + "b"sqrt(3)`
Solution
`(sqrt(3) - 1)/(sqrt(3) + 1) + (sqrt(3) + 1)/(sqrt(3) - 1)`
= `(sqrt(3) - 1)/(sqrt(3) + 1) xx (sqrt(3) - 1)/(sqrt(3) - 1) + (sqrt(3) + 1)/(sqrt(3) - 1) + (sqrt(3) + 1)/(sqrt(3) + 1)`
= `(sqrt(3) - 1)^2/((sqrt(3))^2 - 1) + (sqrt(3) + 1)^2/((sqrt(3))^2 - 1)`
= `((sqrt(3))^2 - 2 xx sqrt(3) xx 1 + 1^2)/(3 - 1) + ((sqrt(3))^2 + 2 xx sqrt(3) xx 1 + 1^2)/(3 - 1)`
= `(3 - 2sqrt(3) + 1)/(2) + (3 + 2sqrt(3) + 1)/(2)`
= `(4 - 2sqrt(3))/(2) + (4 + 2sqrt(3))/(2)`
= `(2(2 - sqrt(3)))/(2) + (2(2 + sqrt(3)))/(2)`
= `2 - sqrt(3) + 2 + sqrt(3)`
= 4 + 0
Hence, a = 4 and b = 0
APPEARS IN
RELATED QUESTIONS
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Simplify by rationalising the denominator in the following.
`(3sqrt(2))/sqrt(5)`
Simplify by rationalising the denominator in the following.
`(42)/(2sqrt(3) + 3sqrt(2)`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify by rationalising the denominator in the following.
`(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6)`
In the following, find the value of a and b:
`(7 + sqrt(5))/(7 - sqrt(5)) - (7 - sqrt(5))/(7 + sqrt(5)) = "a" + "b"sqrt(5)`
If x = `(7 + 4sqrt(3))`, find the values of :
`(x + (1)/x)^2`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) + 1)`, find the values of
x3 + y3
If x = `(1)/((3 - 2sqrt(2))` and y = `(1)/((3 + 2sqrt(2))`, find the values of
x3 + y3