Advertisements
Advertisements
Question
Rationalise the denominator of `1/[ √3 - √2 + 1]`
Solution
`1/[ √3 - √2 + 1]`
= `1/[(√3 - √2) + 1] xx [(√3 - √2) - 1]/[(√3 - √2) - 1]`
= `(√3 - √2 - 1)/[(√3 - √2)^2 - (1)^2]`
= `(√3 - √2 - 1)/[(√3)^2 - 2√6 + (√2)^2 - 1 ]`
= `(√3 - √2 - 1)/(3 - 2√6 + 2 - 1)`
= `(√3 - √2 - 1)/( 4 - 2√6 )`
= `[(√3 - √2) - 1]/[2( 2 - √6 )]`
= `[ √3 - √2 - 1 ]/[ 2( 2 - √6 ) ] xx [ 2 + √6 ]/[ 2 + √6 ]`
= `[ 2√3 - 2√2 - 2 + √18 - √12 - √6 ]/[ 2[ (2)^2 - ( √6)^2 ] ]`
= `[ 2√3 - 2√2 - 2 + 3√2 - 2√3 - √6 ]/[ 2[ 4 - 6] ]`
= `[ √2 - 2 - √6 ]/[ 2(-2) ]`
= `[ √2 - 2 - √6 ]/[ -4 ]`
= `1/4(2 + √6 - √2)`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
Simplify by rationalising the denominator in the following.
`(sqrt(3) + 1)/(sqrt(3) - 1)`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify the following
`(sqrt(7) - sqrt(3))/(sqrt(7) + sqrt(3)) - (sqrt(7) + sqrt(3))/(sqrt(7) - sqrt(3)`
In the following, find the values of a and b.
`(sqrt(3) - 1)/(sqrt(3) + 1) = "a" + "b"sqrt(3)`
In the following, find the values of a and b:
`(3 + sqrt(7))/(3 - sqrt(7)) = "a" + "b"sqrt(7)`
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
If x = `(7 + 4sqrt(3))`, find the value of
`sqrt(x) + (1)/(sqrt(x)`
If x = `((sqrt(3) + 1))/((sqrt(3) - 1)` and y = `((sqrt(3) - 1))/((sqrt(3) - 1)`, find the values of
x2 - y2 + xy