Advertisements
Advertisements
Question
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
Solution
L.H.S = `1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2]`
= `1/[ 3 - √8 ] - 1/[ √8 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2]`
= `1/[ 3 - √8 ] xx [ 3 + √8 ]/[ 3 + √8 ] - 1/[ √8 - √7 ] xx [ √8 + √7 ]/[ √8 + √7 ]+ 1/[ √7 - √6 ] xx [ √7 + √6 ]/[ √7 + √6 ] - 1/[ √6 - √5 ] xx [ √6 + √5 ]/[ √6 + √5 ] + 1/[√5 - 2] xx [ √5 + 2 ]/[ √5 + 2 ]`
= `[ 3 + √8 ]/[(3)^2 - (√8)^2] - [ √8 + √7 ]/[ (√8)^2 - (√7)^2 ] + [ √7 + √6 ]/[ (√7)^2 - (√6)^2 ] - [ √6 - √5 ]/[ (√6)^2 - (√5)^2] + [√5 - 2]/[ (√5)^2 - (2)^2 ]`
= `[ 3 + √8 ]/[ 9 - 8 ] - [√8 + √7]/[8 - 7] + [ √7 + √6 ]/[ 7 - 6 ] - [ √6 - √5 ]/[ 6 - 5 ] + [√5 - 2]/[ 5 - 4 ]`
= 3 + √8 - √8 - √7 + √7 + √6 - √6 - √5 + √5 + 2
= 3 + 2
= 5
= R.H.S.
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3 /sqrt5`
Rationalize the denominator.
`5/sqrt 7`
Write the simplest form of rationalising factor for the given surd.
`3/5 sqrt 10`
Write the lowest rationalising factor of √5 - 3.
Write the lowest rationalising factor of : √18 - √50
Write the lowest rationalising factor of : 15 - 3√2
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).