Advertisements
Advertisements
Question
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`
Solution
`(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`
⇒ `((sqrt(7) - 2)(sqrt(7) - 2))/((sqrt(7) + 2)(sqrt(7) - 2)) = "a"sqrt(7) + "b"`
⇒ `(sqrt(7) - 2)^2/((sqrt(7))^2 - 2^2) = "a"sqrt(7) + "b"`
`((sqrt(7))^2 - 2(sqrt(7))(2) + 2^2)/(7 - 4) = "a"sqrt(7) + "b"`
`(7 - 4sqrt(7) + 4)/3 = "a"sqrt(7) + "b"`
`(11 - 4sqrt(7))/3 = "a"sqrt(7) + "b"`
`11/3 + (-4 sqrt(7))/3 = "a"sqrt(7) + "b"`
∴ a = `- 4/3` and b = `11/3`
The value of a = `- 4/3` and b = `11/3`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`11 / sqrt 3`
Write the simplest form of rationalising factor for the given surd.
`sqrt 32`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the simplest form of rationalising factor for the given surd.
`4 sqrt 11`
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
Rationalise the denominator `5/(3sqrt(5))`
Rationalise the denominator `sqrt(75)/sqrt(18)`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`