Advertisements
Advertisements
प्रश्न
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`
उत्तर
`(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`
⇒ `((sqrt(7) - 2)(sqrt(7) - 2))/((sqrt(7) + 2)(sqrt(7) - 2)) = "a"sqrt(7) + "b"`
⇒ `(sqrt(7) - 2)^2/((sqrt(7))^2 - 2^2) = "a"sqrt(7) + "b"`
`((sqrt(7))^2 - 2(sqrt(7))(2) + 2^2)/(7 - 4) = "a"sqrt(7) + "b"`
`(7 - 4sqrt(7) + 4)/3 = "a"sqrt(7) + "b"`
`(11 - 4sqrt(7))/3 = "a"sqrt(7) + "b"`
`11/3 + (-4 sqrt(7))/3 = "a"sqrt(7) + "b"`
∴ a = `- 4/3` and b = `11/3`
The value of a = `- 4/3` and b = `11/3`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`5/sqrt 7`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the lowest rationalising factor of √5 - 3.
Write the lowest rationalising factor of : √18 - √50
Write the lowest rationalising factor of : √5 - √2
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`