Advertisements
Advertisements
प्रश्न
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
उत्तर
`( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
= `( 4 - √5 )/( 4 + √5 ) xx ( 4 - √5)/( 4 - √5 )+ ( 4 + √5 )/( 4 - √5 ) xx ( 4 + √5 )/( 4 + √5 )`
= `( 4 - √5)^2/[(4)^2 - (√5)^2] + ( 4 + √5)^2/[(4)^2 - (√5)^2]`
= `[ 16 + 5 - 8√5 ]/[ 16 - 5 ] + [ 16 + 5 + 8√5 ]/[ 16 - 5]`
= `[ 21 - 8√5 ]/11 + [ 21 + 8√5 ]/11`
= `[ 21 - 8√5 + 21 + 8√5 ]/11`
= `42/11 = 3 9/11`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`5/sqrt 7`
Write the simplest form of rationalising factor for the given surd.
`sqrt 32`
Write the simplest form of rationalising factor for the given surd.
`sqrt 50`
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : xy
If x = 2√3 + 2√2 , find : `( x + 1/x)^2`
Rationalise the denominator `1/sqrt(50)`
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`