Advertisements
Advertisements
प्रश्न
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
उत्तर
`(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2)) = ((5sqrt(3) + sqrt(2))(sqrt(3) - sqrt(2)))/((sqrt(3) + sqrt(2))(sqrt(3) - sqrt(2))`
= `(5(3) - 5sqrt(3) xx sqrt(2) + (sqrt(2)sqrt(3) - (2)))/((sqrt(3))^2 - (sqrt(2))^2`
= `(15 - 5sqrt(6) + sqrt(6) - 2)/(3 - 2)`
= `(13 - 4sqrt(6))/1`
= `13 - 4sqrt(6)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`6/(9sqrt 3)`
Write the lowest rationalising factor of : 7 - √7
Write the lowest rationalising factor of : √18 - √50
Write the lowest rationalising factor of : √13 + 3
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`
Rationalise the denominator `1/sqrt(50)`
Rationalise the denominator `(3sqrt(5))/sqrt(6)`
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).