Advertisements
Advertisements
प्रश्न
Rationalise the denominator `(3sqrt(5))/sqrt(6)`
उत्तर
`(3sqrt(5))/sqrt(6) = (3sqrt(5))/sqrt(6) xx sqrt(6)/sqrt(6)`
= `(3sqrt(30))/6`
= `sqrt(30)/2`
APPEARS IN
संबंधित प्रश्न
Write the lowest rationalising factor of : √18 - √50
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If x = 2√3 + 2√2 , find : `( x + 1/x)^2`
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
Rationalise the denominator `1/sqrt(50)`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`