Advertisements
Advertisements
प्रश्न
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
उत्तर
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
`[( sqrt7 - 2 )^2]/[ (sqrt7)^2 - (2)^2] = asqrt7 + b`
`[ 7 + 4 - 4sqrt7 ]/[ 7 - 4 ] = asqrt7 + b`
`[ 11 - 4sqrt7 ]/[ 3 ] = asqrt7 + b`
`a = -4/3, b = 11/3`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`6/(9sqrt 3)`
Write the simplest form of rationalising factor for the given surd.
`4 sqrt 11`
Write the lowest rationalising factor of : √24
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
If x = 2√3 + 2√2 , find : `(x + 1/x)`
If x = 5 - 2√6, find `x^2 + 1/x^2`
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`