Advertisements
Advertisements
Question
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
Solution
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
`[( sqrt7 - 2 )^2]/[ (sqrt7)^2 - (2)^2] = asqrt7 + b`
`[ 7 + 4 - 4sqrt7 ]/[ 7 - 4 ] = asqrt7 + b`
`[ 11 - 4sqrt7 ]/[ 3 ] = asqrt7 + b`
`a = -4/3, b = 11/3`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`6/(9sqrt 3)`
Write the simplest form of rationalising factor for the given surd.
`sqrt 50`
Write the lowest rationalising factor of √5 - 3.
Write the lowest rationalising factor of : 15 - 3√2
Write the lowest rationalising factor of : 3√2 + 2√3
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
Rationalise the denominator `1/sqrt(50)`
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`