Advertisements
Advertisements
प्रश्न
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`
उत्तर
√2 = 1.4 and √3 = 1.7
`1/(√3 - √2 )`
= `1/(√3 - √2 ) xx (√3 + √2)/(√3 + √2)`
= `( √3 + √2 )/[(√3)^2 - (√2)^2]`
= `[ √3 + √2 ]/( 3 - 2 )`
= √3 + √2
= 1.7 + 1.4
= 3.1
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/sqrt14`
Rationalize the denominator.
`11 / sqrt 3`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the simplest form of rationalising factor for the given surd.
`4 sqrt 11`
Write the lowest rationalising factor of √5 - 3.
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
Rationalise the denominator `5/(3sqrt(5))`