Advertisements
Advertisements
प्रश्न
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`
उत्तर
√2 = 1.4 and √3 = 1.7
`1/(√3 - √2 )`
= `1/(√3 - √2 ) xx (√3 + √2)/(√3 + √2)`
= `( √3 + √2 )/[(√3)^2 - (√2)^2]`
= `[ √3 + √2 ]/( 3 - 2 )`
= √3 + √2
= 1.7 + 1.4
= 3.1
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/sqrt14`
Rationalize the denominator.
`11 / sqrt 3`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the lowest rationalising factor of : 7 - √7
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
If x = 2√3 + 2√2 , find : `( x + 1/x)^2`
If x = 5 - 2√6, find `x^2 + 1/x^2`
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`