Advertisements
Advertisements
प्रश्न
Write the lowest rationalising factor of : 7 - √7
उत्तर
7 - √7
( 7 - √7 )( 7 + √7 ) = 49 - 7 = 42
Therefore, lowest rationalizing factor is ( 7 + √7 ).
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`5/sqrt 7`
Write the simplest form of rationalising factor for the given surd.
`4 sqrt 11`
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`