Advertisements
Advertisements
प्रश्न
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
योग
उत्तर
We rationalize the denominator,
`x = (sqrt5 - 2)/(sqrt5 + 2) xx (sqrt5 - 2)/(sqrt5 - 2)`
`x = (5 + 4 - 3sqrt5)/ (5 -4)`
`x = (9 - 4 sqrt5)/1`
Then, `x^2 = (9 - 4 sqrt5) (9 - 4 sqrt5)`
`= 81 + 16 ×5 - 72sqrt5 `
`= 161 - 72sqrt5`
We rationalize the denominator,
`y = (sqrt5 + 2)/(sqrt5 - 2) xx (sqrt5 + 2)/(sqrt5 + 2)`
`y = (5 + 4 + 4sqrt5)/(5-4)`
`y = (9 + 4sqrt5)/1`
Then, `y^2 = (9 + 4sqrt5) (9 + 4 sqrt5)`
`= 81 + 16 + 5 + 72 sqrt5`
`= 161 + 72sqrt5`
Now, `x = (sqrt5 + 2)/(sqrt5 - 2)`
and `y = (sqrt5 - 2)/(sqrt5 + 2)`
Then, `xy = (sqrt5 + 2)/(sqrt5 - 2) xx (sqrt5 - 2)/(sqrt5 + 2)`
xy = 1
Therefore, `x^2 + y^2 + xy`
`=161 - 72sqrt5 + 161 + 72sqrt5 + 1 = 323`
shaalaa.com
Rationalisation of Surds
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`5/sqrt 7`
Rationalize the denominator.
`6/(9sqrt 3)`
Write the lowest rationalising factor of 5√2.
Write the lowest rationalising factor of √5 - 3.
Write the lowest rationalising factor of : 15 - 3√2
Write the lowest rationalising factor of : 3√2 + 2√3
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find m2
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
Rationalise the denominator `1/sqrt(50)`
Rationalise the denominator `5/(3sqrt(5))`