Advertisements
Advertisements
प्रश्न
Write the lowest rationalising factor of : 15 - 3√2
उत्तर
15 - 3√2
15 - 3√2 = 3( 5 - √2 )
= 3( 5 - √2 )( 5 + √2 )
= 3 x `[ 5^2 - (sqrt2)^2 ]`
= 3 x [ 25 - 2 ]
= 3 x 23
= 69
Its lowest rationalizing factor is 5 + √2.
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`5/sqrt 7`
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : xy
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find m2
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).