Advertisements
Advertisements
प्रश्न
Write the lowest rationalising factor of : 15 - 3√2
उत्तर
15 - 3√2
15 - 3√2 = 3( 5 - √2 )
= 3( 5 - √2 )( 5 + √2 )
= 3 x `[ 5^2 - (sqrt2)^2 ]`
= 3 x [ 25 - 2 ]
= 3 x 23
= 69
Its lowest rationalizing factor is 5 + √2.
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`3 /sqrt5`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the lowest rationalising factor of 5√2.
Write the lowest rationalising factor of : 7 - √7
Write the lowest rationalising factor of : 3√2 + 2√3
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find m2
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`