Advertisements
Advertisements
प्रश्न
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
उत्तर
n = `1/[ 3 + 2sqrt2 ]`
n = `1/[ 3 + 2sqrt2 ] xx [ 3 - 2sqrt2 ]/[ 3 - 2sqrt2 ]`
n = `[ 3 - 2sqrt2 ]/[ (3)^2 - (2sqrt2)^2 ]`
n = `[ 3 - 2sqrt2 ]/[ 9 - 8 ]`
n = 3 - 2√2
⇒ n2 = ( 3 - 2√2)2
= (3)2 - 2 x 3 x 2√2 + (2√2)2
= 9 - 12√2 + 8
= 17 - 12√2
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`3/5 sqrt 10`
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Write the lowest rationalising factor of √5 - 3.
Write the lowest rationalising factor of : √13 + 3
Write the lowest rationalising factor of : 3√2 + 2√3
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
Rationalise the denominator `(3sqrt(5))/sqrt(6)`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`