Advertisements
Advertisements
प्रश्न
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
उत्तर
`1/x = 1/[2sqrt3 + 2sqrt2] xx [2sqrt3 - 2sqrt2]/[2sqrt3 - 2sqrt2]`
= `[2sqrt3 - 2sqrt2]/[(2sqrt3)^2 - (2sqrt2)^2]`
= `[2sqrt3 - 2sqrt2]/(12 - 8)`
= `[cancel(2)^1(sqrt3 - sqrt2)]/cancel(4)_2`
= `(sqrt3 - sqrt2)/2`
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`sqrt 50`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`