Advertisements
Advertisements
प्रश्न
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`
उत्तर
`sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2) = sqrt(5)(1/(sqrt(6) + 2) - 1/(sqrt(6) - 2))`
= `sqrt(5)[(sqrt(6) - 2 - (sqrt(6) + 2))/((sqrt(6) + 2)(sqrt(6) - 2))]`
= `sqrt(5)[(sqrt(6) - 2 - sqrt(6) - 2)/((sqrt(6))^2 - 2^2)]`
= `sqrt(5)((-4)/(6 - 4))`
= `sqrt(5)((-4)/2)`
= `sqrt(5) xx -2`
= `-2 sqrt(5)`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`6/(9sqrt 3)`
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find :
x2
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
Rationalise the denominator `1/sqrt(50)`
Rationalise the denominator `5/(3sqrt(5))`
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).