Advertisements
Advertisements
प्रश्न
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`
उत्तर
`(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`
⇒ `((sqrt(7) - 2)(sqrt(7) - 2))/((sqrt(7) + 2)(sqrt(7) - 2)) = "a"sqrt(7) + "b"`
⇒ `(sqrt(7) - 2)^2/((sqrt(7))^2 - 2^2) = "a"sqrt(7) + "b"`
`((sqrt(7))^2 - 2(sqrt(7))(2) + 2^2)/(7 - 4) = "a"sqrt(7) + "b"`
`(7 - 4sqrt(7) + 4)/3 = "a"sqrt(7) + "b"`
`(11 - 4sqrt(7))/3 = "a"sqrt(7) + "b"`
`11/3 + (-4 sqrt(7))/3 = "a"sqrt(7) + "b"`
∴ a = `- 4/3` and b = `11/3`
The value of a = `- 4/3` and b = `11/3`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`11 / sqrt 3`
Write the lowest rationalising factor of : 7 - √7
Write the lowest rationalising factor of : √18 - √50
Write the lowest rationalising factor of : 3√2 + 2√3
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find :
x2
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
Rationalise the denominator `5/(3sqrt(5))`
Rationalise the denominator `sqrt(75)/sqrt(18)`