Advertisements
Advertisements
प्रश्न
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
उत्तर
y2 = `[( sqrt5 + 2 )/( sqrt5 - 2 )]^2 = [ 5 + 4 + 4sqrt5 ]/[ 5 + 4 - 4sqrt5 ] = [ 9 + 4sqrt5 ]/[ 9 - 4sqrt5 ]`
= `[ 9 + 4sqrt5 ]/[ 9 - 4sqrt5 ] xx [ 9 + 4sqrt5 ]/[ 9 + 4sqrt5 ] = ( 9 + 4sqrt5)^2/[(9)^2 - (4sqrt5)^2] = [ 81 + 80 + 72sqrt5 ]/[ 81 - 80 ]`
= `161 + 72sqrt5`
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`1/sqrt14`
Write the simplest form of rationalising factor for the given surd.
`sqrt 32`
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Write the lowest rationalising factor of : √18 - √50
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If x = 1 - √2, find the value of `( x - 1/x )^3`
Rationalise the denominator `1/sqrt(50)`
Rationalise the denominator `sqrt(75)/sqrt(18)`
Rationalise the denominator and simplify `(2sqrt(6) - sqrt(5))/(3sqrt(5) - 2sqrt(6))`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).