Advertisements
Advertisements
प्रश्न
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).
उत्तर
`(8 - 5sqrt(2))/(3 - 2sqrt(2)) = ((8 - 5sqrt(2))(3 + 2sqrt(2)))/((3 - 2sqrt(2))(3 + 2sqrt(2))`
= `(24 + 16sqrt(2) - 15sqrt(2) - 10 xx 2)/(3^2 - (2sqrt(2))^2`
= `(24 + sqrt(2) - 20)/(9 - 8)`
= `4 + sqrt(2)`
= 4 + 1.414
= 5.414
APPEARS IN
संबंधित प्रश्न
Rationalize the denominator.
`5/sqrt 7`
Rationalize the denominator.
`6/(9sqrt 3)`
Write the simplest form of rationalising factor for the given surd.
`4 sqrt 11`
Write the lowest rationalising factor of : √5 - √2
Write the lowest rationalising factor of : 3√2 + 2√3
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`