Advertisements
Advertisements
प्रश्न
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
उत्तर
`[ 2 + sqrt3 ]/[ 2 - sqrt3 ] xx [ 2 + sqrt3 ]/[ 2 + sqrt3] = a + bsqrt3`
= `[ (2 + sqrt3)^2 ]/[ (2)^2 - (sqrt3)^2 ] = a + bsqrt3`
= `[ 4 + 3 + 4sqrt3]/[ 4 - 3 ] = a + bsqrt3`
7 + 4√3 = a + b√3
a = 7, b = 4
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
If x = 2√3 + 2√2 , find : `(x + 1/x)`
If x = 1 - √2, find the value of `( x - 1/x )^3`
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`