Advertisements
Advertisements
Question
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
Solution
`1/x = 1/[2sqrt3 + 2sqrt2] xx [2sqrt3 - 2sqrt2]/[2sqrt3 - 2sqrt2]`
= `[2sqrt3 - 2sqrt2]/[(2sqrt3)^2 - (2sqrt2)^2]`
= `[2sqrt3 - 2sqrt2]/(12 - 8)`
= `[cancel(2)^1(sqrt3 - sqrt2)]/cancel(4)_2`
= `(sqrt3 - sqrt2)/2`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`6/(9sqrt 3)`
Write the lowest rationalising factor of 5√2.
Write the lowest rationalising factor of : √18 - √50
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find m2
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).