Advertisements
Advertisements
Question
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
Solution
mn = ( 3 + 2√2 )( 3 - 2√2 ) = (3)2 - (2√2)2 = 9 - 8 = 1
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`11 / sqrt 3`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the simplest form of rationalising factor for the given surd.
`4 sqrt 11`
Write the lowest rationalising factor of : 7 - √7
Find the values of 'a' and 'b' in each of the following :
`[2 + sqrt3]/[ 2 - sqrt3 ] = a + bsqrt3`
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
If x = 2√3 + 2√2 , find : `( x + 1/x)^2`
Rationalise the denominator `(3sqrt(5))/sqrt(6)`
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`