Advertisements
Advertisements
Question
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
Sum
Solution
We rationalize the denominator,
`x = (sqrt5 - 2)/(sqrt5 + 2) xx (sqrt5 - 2)/(sqrt5 - 2)`
`x = (5 + 4 - 3sqrt5)/ (5 -4)`
`x = (9 - 4 sqrt5)/1`
Then, `x^2 = (9 - 4 sqrt5) (9 - 4 sqrt5)`
`= 81 + 16 ×5 - 72sqrt5 `
`= 161 - 72sqrt5`
We rationalize the denominator,
`y = (sqrt5 + 2)/(sqrt5 - 2) xx (sqrt5 + 2)/(sqrt5 + 2)`
`y = (5 + 4 + 4sqrt5)/(5-4)`
`y = (9 + 4sqrt5)/1`
Then, `y^2 = (9 + 4sqrt5) (9 + 4 sqrt5)`
`= 81 + 16 + 5 + 72 sqrt5`
`= 161 + 72sqrt5`
Now, `x = (sqrt5 + 2)/(sqrt5 - 2)`
and `y = (sqrt5 - 2)/(sqrt5 + 2)`
Then, `xy = (sqrt5 + 2)/(sqrt5 - 2) xx (sqrt5 - 2)/(sqrt5 + 2)`
xy = 1
Therefore, `x^2 + y^2 + xy`
`=161 - 72sqrt5 + 161 + 72sqrt5 + 1 = 323`
shaalaa.com
Rationalisation of Surds
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`5/sqrt 7`
Rationalize the denominator.
`11 / sqrt 3`
Write the simplest form of rationalising factor for the given surd.
`sqrt 32`
Write the simplest form of rationalising factor for the given surd.
`sqrt 50`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the simplest form of rationalising factor for the given surd.
`3/5 sqrt 10`
Write the lowest rationalising factor of : 7 - √7
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : xy
If x = 2√3 + 2√2 , find : `(x + 1/x)`
If x = 5 - 2√6, find `x^2 + 1/x^2`