Advertisements
Advertisements
Question
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : xy
Sum
Solution
xy = `[(sqrt5 - 2)(sqrt5 + 2)]/[(sqrt5 + 2)(sqrt5 - 2)] = 1`
shaalaa.com
Rationalisation of Surds
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`6/(9sqrt 3)`
Write the simplest form of rationalising factor for the given surd.
`3/5 sqrt 10`
Write the lowest rationalising factor of : √5 - √2
Write the lowest rationalising factor of : √13 + 3
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If x = 5 - 2√6, find `x^2 + 1/x^2`
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
Rationalise the denominator `sqrt(75)/sqrt(18)`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`