Advertisements
Advertisements
Question
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
Solution
`( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
= `( 4 - √5 )/( 4 + √5 ) xx ( 4 - √5)/( 4 - √5 )+ ( 4 + √5 )/( 4 - √5 ) xx ( 4 + √5 )/( 4 + √5 )`
= `( 4 - √5)^2/[(4)^2 - (√5)^2] + ( 4 + √5)^2/[(4)^2 - (√5)^2]`
= `[ 16 + 5 - 8√5 ]/[ 16 - 5 ] + [ 16 + 5 + 8√5 ]/[ 16 - 5]`
= `[ 21 - 8√5 ]/11 + [ 21 + 8√5 ]/11`
= `[ 21 - 8√5 + 21 + 8√5 ]/11`
= `42/11 = 3 9/11`
APPEARS IN
RELATED QUESTIONS
Write the lowest rationalising factor of 5√2.
Write the lowest rationalising factor of : 7 - √7
Write the lowest rationalising factor of : √5 - √2
Write the lowest rationalising factor of : √13 + 3
Write the lowest rationalising factor of : 15 - 3√2
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
Rationalise the denominator and simplify `sqrt(5)/(sqrt(6) + 2) - sqrt(5)/(sqrt(6) - 2)`
Find the value of a and b if `(sqrt(7) - 2)/(sqrt(7) + 2) = "a"sqrt(7) + "b"`