Advertisements
Advertisements
Question
If x = 2√3 + 2√2 , find : `(x + 1/x)`
Solution
`x + 1/x = 2sqrt3 + 2sqrt2 + (√3 - √2)/2`
= `2( sqrt3 + sqrt2 ) + (sqrt3 - sqrt2)/2`
= `(4( sqrt3 + sqrt2) + (sqrt3 - sqrt2))/2`
= `[ 4sqrt3 + 4sqrt2 + sqrt3 - sqrt2 ]/2`
= `[ 5sqrt3 + 3sqrt2 ]/2`
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3 /sqrt5`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the simplest form of rationalising factor for the given surd.
`4 sqrt 11`
Write the lowest rationalising factor of : √18 - √50
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find :
x2
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.
Rationalise the denominator `1/sqrt(50)`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`