Advertisements
Advertisements
Question
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find :
x2
Solution
x2 = `[( sqrt5 - 2 )/( sqrt5 + 2 )]^2 = [ 5 + 4 - 4sqrt5 ]/[ 5 + 4 + 4sqrt5] = [ 9 - 4sqrt5 ]/[ 9 + 4sqrt5 ]`
= `[ 9 - 4sqrt5 ]/[ 9 + 4sqrt5 ] xx [( 9 - 4sqrt5 )/( 9 - 4sqrt5 )] = (9 - 4sqrt5)^2/[(9)^2 - (4sqrt5)^2]`
= `[ 81 + 80 - 72sqrt5]/[ 81 - 80 ] = 161 - 72sqrt5 `
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`1/sqrt14`
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Write the lowest rationalising factor of : 15 - 3√2
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
If x = 2√3 + 2√2 , find : `( x + 1/x)^2`
If x = 1 - √2, find the value of `( x - 1/x )^3`
Rationalise the denominator `5/(3sqrt(5))`
Rationalise the denominator `sqrt(75)/sqrt(18)`
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`