Advertisements
Advertisements
Question
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(√3 - √2)`
Solution
√2 = 1.4 and √3 = 1.7
`1/(√3 - √2 )`
= `1/(√3 - √2 ) xx (√3 + √2)/(√3 + √2)`
= `( √3 + √2 )/[(√3)^2 - (√2)^2]`
= `[ √3 + √2 ]/( 3 - 2 )`
= √3 + √2
= 1.7 + 1.4
= 3.1
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`11 / sqrt 3`
Write the simplest form of rationalising factor for the given surd.
`3 sqrt 72`
Write the lowest rationalising factor of : 7 - √7
Write the lowest rationalising factor of : √13 + 3
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : xy
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find mn
If x = 2√3 + 2√2 , find : `(x + 1/x)`
If x = 5 - 2√6, find `x^2 + 1/x^2`
If `[ 2 + sqrt5 ]/[ 2 - sqrt5] = x and [2 - sqrt5 ]/[ 2 + sqrt5] = y`; find the value of x2 - y2.