Advertisements
Advertisements
प्रश्न
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
उत्तर
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
`[5 + 3sqrt2]/[ 5 - 3sqrt2] xx [5 + 3sqrt2]/[ 5 + 3sqrt2]= a + bsqrt2`
`[ ( 5 + 3sqrt2)^2 ]/[ (5)^2 - ( 3sqrt2)^2 ] = a + bsqrt2`
`[ 25 + 18 + 30sqrt2 ]/[ 25 - 18 ] = a + bsqrt2`
`[ 43 + 30sqrt2 ]/7 = a + bsqrt2`
`a = 43/7, b = 30/7`
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`sqrt 32`
Write the simplest form of rationalising factor for the given surd.
`sqrt 50`
Write the lowest rationalising factor of : √18 - √50
Write the lowest rationalising factor of : √5 - √2
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : xy
If x = `2sqrt3 + 2sqrt2`, find: `1/x`
If x = 2√3 + 2√2 , find : `(x + 1/x)`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
Given `sqrt(2)` = 1.414, find the value of `(8 - 5sqrt(2))/(3 - 2sqrt(2))` (to 3 places of decimals).