Advertisements
Advertisements
Question
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
Solution
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
`[5 + 3sqrt2]/[ 5 - 3sqrt2] xx [5 + 3sqrt2]/[ 5 + 3sqrt2]= a + bsqrt2`
`[ ( 5 + 3sqrt2)^2 ]/[ (5)^2 - ( 3sqrt2)^2 ] = a + bsqrt2`
`[ 25 + 18 + 30sqrt2 ]/[ 25 - 18 ] = a + bsqrt2`
`[ 43 + 30sqrt2 ]/7 = a + bsqrt2`
`a = 43/7, b = 30/7`
APPEARS IN
RELATED QUESTIONS
Write the simplest form of rationalising factor for the given surd.
`sqrt 32`
Write the simplest form of rationalising factor for the given surd.
`3/5 sqrt 10`
Write the lowest rationalising factor of : 15 - 3√2
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : xy
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
Rationalise the denominator `(3sqrt(5))/sqrt(6)`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`
If x = `sqrt(5) + 2`, then find the value of `x^2 + 1/x^2`