Advertisements
Advertisements
प्रश्न
Write the lowest rationalising factor of √5 - 3.
उत्तर
(√5 - 3)(√5 + 3) = (√5)2 - (3)2 = 5 - 9 = -4
∴ lowest rationalizing factor is (√5 + 3)
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`sqrt 50`
Write the lowest rationalising factor of 5√2.
Write the lowest rationalising factor of : √5 - √2
Find the values of 'a' and 'b' in each of the following:
`3/[ sqrt3 - sqrt2 ] = asqrt3 - bsqrt2`
Find the values of 'a' and 'b' in each of the following:
`[5 + 3sqrt2]/[ 5 - 3sqrt2] = a + bsqrt2`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2 ]`; find : y2
If x = 2√3 + 2√2 , find : `( x + 1/x)^2`
Show that :
`1/[ 3 - 2√2] - 1/[ 2√2 - √7 ] + 1/[ √7 - √6 ] - 1/[ √6 - √5 ] + 1/[√5 - 2] = 5`
Rationalise the denominator `sqrt(75)/sqrt(18)`
Rationalise the denominator and simplify `(sqrt(48) + sqrt(32))/(sqrt(27) - sqrt(18))`