Advertisements
Advertisements
प्रश्न
Rationalise the denominator `1/sqrt(50)`
उत्तर
`1/sqrt(50) = 1/(sqrt(25 xx 2)`
= `1/(5sqrt(2))`
= `1/(5sqrt(2)) xx sqrt(2)/sqrt(2)`
= `sqrt(2)/(5 xx 2)`
= `sqrt(2)/10`
APPEARS IN
संबंधित प्रश्न
Write the simplest form of rationalising factor for the given surd.
`sqrt 50`
Write the simplest form of rationalising factor for the given surd.
`sqrt 27`
Write the lowest rationalising factor of : √5 - √2
Write the lowest rationalising factor of : √13 + 3
Find the values of 'a' and 'b' in each of the following:
`( sqrt7 - 2 )/( sqrt7 + 2 ) = asqrt7 + b`
If x =`[sqrt5 - 2 ]/[ sqrt5 + 2]` and y = `[ sqrt5 + 2]/[ sqrt5 - 2]`; find:
x2 + y2 + xy.
If m = `1/[ 3 - 2sqrt2 ] and n = 1/[ 3 + 2sqrt2 ],` find n2
Evaluate : `( 4 - √5 )/( 4 + √5 ) + ( 4 + √5 )/( 4 - √5 )`
If √2 = 1.4 and √3 = 1.7, find the value of : `1/(3 + 2√2)`
Rationalise the denominator and simplify `(5sqrt(3) + sqrt(2))/(sqrt(3) + sqrt(2))`