Advertisements
Advertisements
Question
In the following, find the values of a and b:
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) = "a" - "b"sqrt(77)`
Solution
`(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)`
= `(sqrt(11) - sqrt(7))/(sqrt(11) + sqrt(7)) xx (sqrt(11) - sqrt(7))/(sqrt(11) - sqrt(7)`
= `(sqrt(11) - sqrt(7))^2/((sqrt(11))^2 - (sqrt(7))^2`
= `((sqrt(11))^2 + (sqrt(7))^2 - 2 xx sqrt(11) xx sqrt(7))/(11 - 7)`
= `(11 + 7 - 2sqrt(77))/(4)`
= `(18 - 2sqrt(77))/(4)`
= `(18)/(4) - (2)/(4)sqrt(77)`
= `(9)/(2) - (1)/(2)sqrt(77)`
= `"a" - "b"sqrt(77)`
Hence, a = `(9)/(2)` and b = `(1)/(2)`.
APPEARS IN
RELATED QUESTIONS
Rationalize the denominator.
`3/(2 sqrt 5 - 3 sqrt 2)`
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Rationalise the denominators of : `[ 2 - √3 ]/[ 2 + √3 ]`
Rationalise the denominators of : `[ sqrt3 - sqrt2 ]/[ sqrt3 + sqrt2 ]`
If `sqrt2` = 1.4 and `sqrt3` = 1.7, find the value of `(2 - sqrt3)/(sqrt3).`
Simplify by rationalising the denominator in the following.
`(4 + sqrt(8))/(4 - sqrt(8)`
Simplify by rationalising the denominator in the following.
`(sqrt(15) + 3)/(sqrt(15) - 3)`
Show that Negative of an irrational number is irrational.
Show that: `x^3 + 1/x^3 = 52`, if x = 2 + `sqrt3`
Show that: `(3sqrt2 - 2sqrt3)/(3sqrt2 + 2sqrt3) + (2 sqrt3)/(sqrt3 - sqrt2) = 11`