Advertisements
Advertisements
Question
Rationalize the denominator.
`4/(7+ 4 sqrt3)`
Solution
`4/(7+ 4 sqrt3)`
`= 4/(7+ 4 sqrt3) xx (7- 4 sqrt3)/(7 - 4 sqrt3) `
`= (4(7- 4 sqrt3))/((7)^2 - (4 sqrt 3)^2)` ....`[(a + b)(a - b) = a^2 - b^2]`
`= (4(7- 4 sqrt3)) /(49 - 48)`
`= 28 - 16 sqrt 3`
APPEARS IN
RELATED QUESTIONS
Rationalise the denominators of : `(2sqrt3)/sqrt5`
Rationalise the denominators of : `3/[ sqrt5 + sqrt2 ]`
Rationalise the denominators of : `[ √3 + 1 ]/[ √3 - 1 ]`
Rationalise the denominators of : `[ 2√5 + 3√2 ]/[ 2√5 - 3√2 ]`
Simplify:
`sqrt2/[sqrt6 - sqrt2] - sqrt3/[sqrt6 + sqrt2]`
Simplify : `sqrt18/[ 5sqrt18 + 3sqrt72 - 2sqrt162]`
Simplify by rationalising the denominator in the following.
`(2)/(3 + sqrt(7)`
Simplify by rationalising the denominator in the following.
`(5sqrt(3) - sqrt(15))/(5sqrt(3) + sqrt(15)`
Simplify the following
`(sqrt(5) - 2)/(sqrt(5) + 2) - (sqrt(5) + 2)/(sqrt(5) - 2)`
Simplify the following :
`(3sqrt(2))/(sqrt(6) - sqrt(3)) - (4sqrt(3))/(sqrt(6) - sqrt(2)) + (2sqrt(3))/(sqrt(6) + 2)`